

EAGLE: An Extensible, End-to-End Simulation and **Evaluation Framework for Planetary E/DLS**

Ender St. John-Olcayto (1), Guy Johns (2), Alastair Pidgeon (1), Christian Philippe (2)

Entry, Descent, and Landing: A Tough **Engineering** Challenge!

No Aerocapture is Possible with **Some Targets!**

What is EAGLE? – "Entry and Guided **Landing Environment**":

- Simulation framework for multi-body, multi-fidelity simulation. - Uses Model Based Design philosophy.
- Who is for?
 - Developed for ESA and aimed at end-end cradle to grave
 - Phase A through to Phase D (and E),
 - Entry to Landing (and Return).
- Why is different?
 - No more single simulator developments. Standards based, extensible, highly configurable.
 - Full lifecycle simulation.

EAGLE: Target Users

- GNC Engineers: Algorithms prototyping, technology maturation, hardware testing.
- System Engineers / Designers: Equipment choices, trade-off studies, performance analysis.
- Mission Engineers / Designers: Mission concept, multiple system interactions, task optimisation.
- Test and Analysis Teams: Validation and verification. Allows users with domain specific knowledge to
- focus on specialist area.
- Provides an integration and test environment for the model, system and mission levels. Faster design iteration and increased productivity!

Why EAGLE? Previous Simulators Have not Been Portable

• Example of what a simulator software architecture may look

RFCS Thermal

Payloads

- No clear interface between models. Difficult to isolate models for reuse. Transforming a working simulator into a new one can be a long and
 - faulty process. Software reuse almost impossible.

Situation can be improved:

- Defining clear interfaces between the different elements of the spacecraft.
- Breaking down the whole simulator Realizing "plug-and-play" models.

Full MATLAB / Simulink Integration

- · Actuator library,
- Dynamics library,
- Environment library,
- Mathematics library,
- Sensor library.

EAGLE Primary Elements and Data Flow EAGLE Framework Analysis Design Tools Tools **Simulation** User Kernel **Interface** Model Repository Repository

• Goal: A common approach for performing simulation-based probe E/D&L applications. Mission concept evaluation:

- systems engineering for planetary
 - Spacecraft and lander options,
 - Evaluating budgets, Maximising return on
- investment. Mission candidate selection,
- Requirements development, Algorithm verification and
- validation: · GNC.
- Final Landing Site Selection,
- · Hazard Detection & Avoidance.
- A common tool for all subsystems engineers to work with. • Not Mars-specific! Should be
- usable for other E/D&L missions too (Moon, Mercury, asteroids.)

Real ground modelling

Examples of outputs from

Generation Utility) by Univ.

various sensors

(Planetary Scene

of Dundee.